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Abstract

We show that the number of arithmetic operations required to calculate a dominant ε-eigenvector of
a real symmetric or complex Hermitian n × n matrix, when averaged over any density invariant under
linear transformations that preserve the Frobenius norm, is bounded above by a polynomial in the size
of the matrix. In fact, a specific upper bound is given in terms of n and ε. We also describe an estimate
of the distance between an arbitrary complex n×m matrix and its rank one approximation.

Introduction

We present upper bounds on the statistical complexity of dominant ε-eigenvector calculation. We assume
exact arithmetic throughout. See Blum et al. (1989), Smale (1985), and Traub et al. (1988) for a general
discussion of this methodology. We restrict our attention to real symmetric and complex Hermitian matrices
until Section 4. However, Definitions 2.1-2.4 apply to any matrix. Analogous results for stochastic matrices
can be found in Wright (1989). Our definition of a dominant ε-eigenvector is a root error definition as
opposed to a residual error definition:

Definition. A vector v is a dominant ε-eigenvector of a matrix M if there exists a dominant eigenvector
w of M with the property that ||v − w||2 ≤ ε||v||2. Whenever dominant ε-eigenvectors are discussed, it is
assumed that 0 < ε ≤ 1.

This definition is better adapted to the exact arithmetic model than to models that include error. One of
the referees described the limitations of the real number model and the chosen definition of the ε-eigenvector
as follows.

“[The author] assumes exact arithmetic, which makes his model easier to compute in than the usual
floating point one. But his stopping criterion is quite strong, that the dominant eigenvector be computed
with accuracy ε (in the norm sense) no matter how close λ1 and λ2 are. This is more than is asked in the
usual situation, since if we compute with arithmetic with relative accuracy εa, then perturbation theory
implies that we expect uncertainty in the dominant eigenvector of about εa/(1 − |λ2/λ1|). To meet the
author’s stopping criterion, we would need at least that εa < εa/(1 − |λ2/λ1|). Thus the work would grow
at least like log εa log log εa log log log εa, (via Schönhage-Strassen multiplication) where log εa grows like
| log ε|+ log(λ2/λ1− 1). This is much more pessimistic than the author’s bound, which grows like log | log ε|,
although the λ2/λ1 dependence is similar.

“This may be a situation where the real number model studied by Smale and others is definitely ‘too
strong’ to accurately model actual approximate computation, and this may be the most interesting conclu-
sion.”

The author will only add that the propagation of error inherent to the algorithm can be controlled by
occasionally multiplying the iterates by the original matrix and then symmetrizing. A detailed error analysis
is not include in this paper.

We assume that the density chosen for the space of matrices is invariant under linear transformations
that preserver the Frobenius norm. Examples of such densities are given in Section 1. However, as is implicit
in Section 4 of Kostlan (1985), Wishart matrices would give similar results.
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A well-known algorithm for finding dominant eigenvectors of matrices consists of repeatedly squaring
a matrix, renormalizing the matrix after each squaring. See Wilkinson (1965). In order to find an upper
bound on the complexity of dominant eigenvector calculation, we need a criterion for when to terminate
the algorithm. This is discussed in Section 2, and is based upon a Gerschgorin-like estimate developed in
Section 4 (in particular, Corollary 4.2). The available statistical information about the eigenvalues of real
symmetric and complex Hermitian n × n matrices allows us to show that the average number of iterations
required by the algorithm is O(ln n + ln | ln ε|). A specific upper bound is given in Theorem 3.1.

The average complexity of an algorithm can be misleading. For example, Theorem 9.2 of Kostlan (1985)
shows that the average complexity of the power method is infinite. We thus include an estimate of the cost
distribution function of the algorithm; this is, we give an upper bound on the probability that the algorithm
will take more than any prescribed number of iterations to produce a dominant ε-eigenvector (Theorem 3.2).

Throughout the paper, the cumulative distribution function of a random variable X, that is, Prob[X ≤ z],
is denoted by FX(z). The eigenvalues of a matrix are denoted by λi, in decreasing order of magnitude. The
i-th element of the standard basis of Rn or Cn is denoted by ei. The Frobenius norm of a matrix M is
denoted by ||M||F .

1 Random Matrices

We consider densities invariant under linear transformations that preserve the Frobenius norm. For simplicity
we assume that Prob[M = 0] = 0. Since we are only concerned with the ratio of the eigenvalues, all such
densities give the same results. Thus, for example, our results apply to matrices uniformly distributed
over the set {||M||F ≤ c}, for any constant c > 0. Alternately, we would consider the µ = 0 case of the
two-parameter family of densities

C exp
[
− 1

2σ2
||M− µI||2F

]
, (1.1)

where C = (
√
πσ)−n(n+1)/22−n/2 [resp. (

√
πσ)−n

2
2−n/2] for real symmetric [resp. complex Hermitian]

n× n matrices. These densities have the property of being invariant under conjugation by orthogonal [resp.
unitary] matrices. For a detailed study of the properties of these matrices and their eigenvalues, see Mehta
(1967). It is easily checked that these densities are invariant under linear transformations that preserve the
Frobenius norm if and only if µ = 0.

Theorem 1.1 For matrices distributed as described above the cumulative distribution function of the random
variable |λ1/λ2| satisfies

F|λ1/λ2|(z) = Prob[|λ1/λ2| ≤ z] ≤


0 if z ≤ 1

z0(z−1)
(z0−1)z if 1 < z ≤ z0

1 if z > z0

 ,

where z0 = 3
√

2(βn(n− 1)/2 + n)[3
√

2(βn(n− 1)/2 + n)− 1], and where β = 1 for the real symmetric case
and β = 2 for the complex Hermitian case.

Note that z0/(z0 − 1) is O(n2).
Proof. This is Theorem 4.3 of Kostlan (1985). This is also equivalent to Theorem 4.4 of Kostlan (1988),

which is stated somewhat differently, and which contains a minor error – there is a division by
√

2 that
should be a multiplication by

√
2. 2

Note that similar bounds may be obtained by applying the theory of volumes of tubes of real algebraic
varieties.

2 The Algorithm

Definition 2.1 For any matrix M, define I and J by (∀i, j)|MIJ | ≥ |Mij |. I and J are uniquely defined
with probability one, and if they are not unique, break the tie by any method.
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Definition 2.2 For any matrix M, define K by (∀i)||MeK ||2 ≥ ||Mei||2. K is uniquely defined with prob-
ability one, and if it is not unique, break the tie by any method.

Definition 2.3 For any matrix M, define M# to be MeJe
†
IM/MIJ .

Definition 2.4 For any matrix M, define M∗ to be the rank one approximation of M, that is, the closest
rank one matrix to M in the Frobenius norm. M∗ is uniquely defined with probability one, and if it is not
unique, break the tie by any method.

Note that if M is a rank one matrix M = M# = M∗.

For the remainder of this section, assume M is a complex Hermitian n × n matrix. We consider the
following algorithm:

1. M := M2

2. M := M / MIJ

3. If n||M−M#||2F ≤ ε2||M||2F , stop.
4. goto 1
The algorithm will stop if |λ1| > |λ2|. Thus the algorithm will stop with probability one. If the algorithm

has stopped, MeK is a dominant ε-eignevector – see Lemmas 2.1 and 2.2. In practice, norms other than the
Frobenius norm are easier to calculate, but for the Frobenius norm the geometric picture is clearer. Step 2
could be omitted for our purposes, but in practice it must be included to prevent under/overflow. We place
the stopping criterion at the end of the iteration to simplify the iteration count.

Lemma 2.1 If n||M−M∗||2F ≤ ε2||M||2F , then MeK is a dominant ε-eigenvector.

Proof. If n||M−M∗||2F ≤ ε2||M||2F , then n||MeK−M∗eK ||22 ≤ ε2||M||2F . Thus MeK is within ||M||F ε/
√
n

of a dominant eigenvector. But ||MeK ||2 ≥ ||M||F /
√
n, and therefore, MeK is a dominant ε-eigenvector. 2

Lemma 2.2 If the algorithm has stopped, n||M−M∗||2F ≤ ε2||M||2F , and if n3||M−M∗||2F ≤ ε2||M||2F , the
algorithm will stop on the current iteration.

Proof. The result follows immediately from ||M −M∗||F ≤ ||M −M#||F ≤ n||M −M∗||F , which is a
special case of Corollary 4.2. 2

Lemma 2.3 For δ > 0, if |λ1/λ2|2 ≥ (n− 1)(δ−2 − 1), then ||M−M∗||F ≤ δ||M||F .

Proof. For δ ≥ 1 the result is trivial. For 0 < δ < 1,

|λ1/λ2|2 ≥ (n− 1)(δ−2 − 1) ↔ (n− 1)|λ2|2 ≤ δ2[|λ1|2 + (n− 1)|λ2|2] .

Since δ < 1 this implies that∑
i 6=1

|λi|2 ≤ δ2
∑
i=1,n

|λi|2 ↔ ||M−M∗||F ≤ δ||M||F . 2

Theorem 2.1 For any complex Hermitian n × n matrix the number of iterations the algorithm requires is
less than or equal to

Max
{

1
ln 2

[ln(2 lnn+ | ln ε|)− ln ln |λ1/λ2|] , 0
}

+ 1 .

In particular, the algorithm exhibits quadratic convergence.

Proof. For δ = εn−3/2, Lemma 2.3 implies that if |λ1/λ2|2 > n4/ε2 > (n− 1)(n3/ε2 − 1), then n3||M−
M∗||2F ≤ ε2||M||2F , and therefore, by Lemman 2.2, the algorithm will stop on the current interation. So for
any matrix M, and for any s ≥ 0, |λ1/λ2|2

s

> n2/ε implies that the algorithm will stop in at most s + 1
iterations – we must add one to s because s may not be an integer. Solve for s. 2
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3 The Statistical Complexity of the Algorithm

Theorem 3.1 The average number of iterations required by the algorithm to find a dominant ε-eigenvector
is less than or equal to

1
ln 2
{ln[3

√
2(βn(n− 1)/2 + n)] + 1 + ln[2 lnn+ | ln ε|]} + 1 ,

where β = 1 for the real symmetric case and β = 2 for the complex Hermitian case.

Proof. We need to integrate the expression in Theorem 2.1 against the distribution function of |λ1/λ2|.
Therefore, it suffices to bound ∫ e

1

− ln ln(z)dF|λ1/λ2|(z) (3.1)

from above. By Theorem 1.1, (3.1) is bounded above by

z0

z0 − 1

∫ z0

1

− ln ln(x)
dx

x2
<

z0

z0 − 1

∫ z0

1

− ln
(
x− 1
x

)
dx

x2
= ln

(
z0

z0 − 1

)
+ 1 ,

where z0/(z0 − 1) = 3
√

2(βn(n− 1)/2 + n). 2

Corollary. For real symmetric and complex Hermitian matrices, the dominant eigenvector can be estimated
to any accuracy in a number of arithmetic operations that, on the average, grows slower than some polynomial
of the size of the matrix.

Proof. Each iteration of the algorithm can be performed in a number of operations that grows as a
polynomial in the size of the matrix. 2

For a discussion of the complexity of matrix squaring, see Pan (1984).

Theorem 3.2 Let N be the number of iterations required by the algorithm to find a dominant ε-eigenvector.
Then for z ≥ 1,

1− FN (z) = Prob[N > z] ≤ 3
√

2(βn(n− 1)/2 + n)[1− (ε/n2)21−z
],

where β = 1 for the real symmetric case and β = 2 for the complex Hermitian case.

Proof. By Theorem 2.1,

Prob[N > z] ≤ Prob
[
Max

{
1

ln 2
[ln(2 lnn+ | ln ε|)− ln ln |λ1/λ2|] , 0

}
+ 1 > z

]
. (3.2)

Solving for |λ1/λ2|, the right-hand side of (3.2) becomes Prob[|λ1/λ2| < (n2/ε)21−z
]. But by Theorem 1.1,

this is less than or equal to 3
√

2(βn(n− 1)/2 + n)[1− (ε/n2)21−z
]. 2

Note that we could have derived Theorem 3.1 by estimating the integral
∫∞
x=0

xdFN (x), using Theorem
3.2.

4 An Inequality for Complex n×m Matrices

In this section, we prove an inequality that allows us to estimate the distance between a matrix and its rank
one approximation. This result relates information about the singular values of a matrix to information
about its entries, and is therefore in the spirit of the Gerschgorin Circle Theorem for eigenvalues.

Theorem 4.1 For any n×m matrix M, and for any v ∈ Cm and any w ∈ Cn,

||(w†Mv)M−Mvw†M||F ≤ ||M||2||M−M∗||F ||v||2||w||2 .
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Note that the left-hand side of this inequality depends only on the entries of the matrix M, while the
right-hand side depends only on the singular values of M.

Proof. All sums appearing in this proof are single sums; the index of summation is always the first variable
appearing under the summation sign. Both sides of the inequality are invariant under two-sided unitary
coordinate transformations, so without loss of generality assume that M is diagonal, positive semidefinite,
with singular values µ1 ≥ · · · ≥ µk > 0, where k is the rank of M. The desired inequality reduces to

∑
i=1,k

∣∣∣∣∣∣µi
∑
j=1,k

vjwjµj − viwiµ2
i

∣∣∣∣∣∣
2

+
∑
i=1,k

∑
j 6=i

|viwjµiµj |2 ≤ µ2
1

∑
i 6=1

µ2
i ||v||22||w||22 . (4.1)

The left-hand side of (4.1) can be rewritten as

∑
i=1,k

∣∣∣∣∣∣µi
∑
j 6=i

vjwjµj

∣∣∣∣∣∣
2

+
∑
i=1,k

∑
j 6=i

|viwjµiµj |2 ,

or, equivalently,

∑
i=1,k

µ2
i


∣∣∣∣∣∣
∑
j 6=i

vjwjµj

∣∣∣∣∣∣
2

+ |vi|2
∑
j 6=i

|wjµj |2

 . (4.2)

But by the Cauchy-Schwartz inequality,∣∣∣∣∣∣
∑
j 6=i

vjwjµj

∣∣∣∣∣∣
2

≤
∑
j 6=i

|vj |2
∑
j 6=i

|wjµj |2 ,

so we see that (4.2) is less than or equal to

||v||22
∑
i=1,k

µ2
i

∑
j 6=i

|wjµj |2
 = ||v||22

∑
i=1,k

∑
j 6=i

|wjµiµj |2 = ||v||22
∑
j=1,k

|wj |2
µ2

j

∑
i 6=j

µ2
i

 . (4.3)

But for all j,
µ2
j

∑
i 6=j

µ2
i ≤ µ2

i

∑
i 6=1

µ2
i .

Therefore the right-hand side of (4.3) is less than or equal to

||v||22||w||22µ2
1

∑
i 6=1

µ2
i ,

and we have established the desired inequality. 2

Corollary 4.1 For any complex n×m matrix M,

|MIJ |||M−M#||F ≤ ||M||2||M−M∗||F .

Proof. This is just Theorem 4.1, with v = eJ and w = eI . 2

Corollary 4.2 For any complex n×m matrix M of rank at least two,

1 ≤ ||M−M#||F
||M−M∗||F

<
√
nm .

These inequalities are sharp, even when restricted to real (and when n = m, symmetric) matrices.
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Proof. The left-hand inequality holds because M# is of rank one and M∗ is the closest rank one matrix to
M, and is sharp because equality holds for diagonal matrices. The right-hand inequality follows immediately
from Corollary 4.1, and from the following trivial inequality for matrices of rank at least two:

||M||2 < ||M||F ≤ |MIJ |
√
nm .

Sharpness of the inequality can be shown as follows. For t > 0 define matrices Mt by

Mt
11 = 1 + t, Mt

ij = 1 for all other ij.

Then a straightforward calculation shows that

lim
t→0+

||Mt −Mt#||F
||Mt −Mt∗||F

=
√
nm . 2
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